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We show how an inequality for the stiffness exponent for spin-glass models 
proposed by Fisher and Huse could be violated. We analyze their derivation 
and point out that their scaling arguments do not apply to investigations of the 
difference between systems with periodic and antiperiodic boundary conditions. 
As a consequence, the possibility remains open that in sufficiently high dimen- 
sions an infinite number of pure states exists and that an Almeida-Thouless line 
--spin-glass transition in a field--occurs, as is predicted in competing theories. 
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Fisher and Huse (1-4) have proposed  a theory of short-range spin-glass 
models which strongly differs from earlier attempts, in part icular  in high 
dimensions. In contrast  to earlier theories, based on percolation of frustra- 
tion (5) or  on an expansion a round  the infinite-range Sher f ing ton-  
Kirkpatr ick (SK) model,  which predict infinitely many  pure states in suf- 
ficiently high dimension, Fisher and Huse claim that  in any dimension, 
from three upward,  the number  of  pure (extremal Gibbs)  states (2'7~ is two, 
and that there is no  Almeida-Thouless  line (s~ (transition in a field). 
Moreover ,  they cast serious doub t  on the applicability of SK-like concepts 
by showing that in finite dimensions the famous Parisi function (9~ p(q) is 
strongly dependent  on boundary  conditions, does not  describe the number  
of pure states, and hence cannot  be expected to describe the physics of the 
system. 
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The main ingredient in their argument against many states is an 
inequality for the stiffness exponent 0. If a droplet or domain wall of linear 
size L exists in the system, its energy will typically be O(L~ The Fisher- 
Huse prediction is 

1 
o < d 2  (1) 

From this inequality they argue that in every dimension there will be at 
most two pure Gibbs states and that an external magnetic field will destroy 
the transition--there will be no Almeida-Thouless line. In this paper we 
argue against the general validity of inequality (1). 

In deriving this inequality the following arguments are used. (2'3) Con- 
sider a random-bond Ising Hamiltonian with symmetrically distributed 
coupling constants. Let us take two realizations of the bonds which are 
identical except in one L d- 1 sheet (finite flat piece) within a ( d -  1)-dimen- 
sional hyperplane. All bonds in the sheet which are pointing in the direc- 
tion perpendicular to the sheet have opposite signs in the two realizations. 
We consider the difference in ground-state energy or free energy between 
the two systems. If the differences in the ground-state energies due to flip- 
ping two bonds were independent or weakly dependent at large distances, 
by the central limit theorem the total energy difference would be 

AE = O(L (a- a)/2) (2) 

If (1) holds, we have the opposite case, and there would be some long- 
range correlation between the effects of bonds that are far apart. The 
scaling arguments of ref. 3 predict 3 that the energy difference between the 
two ground states in that case would satisfy 

~E=O(U-1 o) (3) 

These scaling arguments can be expected to apply to a large sheet 
inside an infinite system. In this case, the difference between the two 
ground-state configurations could be of essentially two sorts. If (1) holds, 
then the formation of a large, approximately isotropic "droplet" is energeti- 
cally favored and there would be one large region of spins on one side of 
the sheet, in which the spins in the two ground-state configurations point 
in opposite directions (the droplet). The energy of such a droplet of linear 
size Lx is O(L~ and, on the other hand, because of Eq. (3), it is equal to 
O(L a- 1 -- 0). Therefore, 

L1 = O(L(d- 1 -- 0 ) / 0 )  (4) 

3 See especially Eqs. (A6), (A23), and following. We need not require that B ~  L. 
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so LI ~> L. The sheet is part of the boundary of the droplet and L1 is the 
distance over which the influence of changing the bonds in the sheet 
propagates. 

In the other case, when (1) is violated, the change in the ground-state 
configuration would consist of a large number O[(L/l) a 1] of small (half) 
droplets of typical linear size l on both sides of the sheet. Thus, the two 
ground-state configurations differ in a highly anisotropic region, namely 
the L d ~xl region along the sheet. As the signs of the energy changes 
would be independent between different droplets, the total energy change 
would be 

AE=OI(1)  (d 1~/21~ (5) 

A large droplet would give rise to an energy change 3 E =  O(L~ which is 
more than the O(L (a 1~/2) predicted by (5), and hence will not occur. One 
can think of l as a kind of correlation length, describing how far the 
influence of changing the bonds in the sheet propagates in the direction 
perpendicular to the sheet. Every droplet now has part of its boundary on 
(part of) the sheet. Together they cover the whole sheet. 

Note that, whether (1) holds or not, there is no contribution to AE 
from bonds in the sheet itself. 

The application which Fisher and Huse give, however, considers a 
sheet within a cylindrical system (periodic or antiperiodic boundary condi- 
tions in the direction perpendicular to the sheet, free boundary conditions 
in the other d -  1 directions). The system is supposed to be of linear size 
L in the directions of the sheet, and also in the direction perpendicular to 
the sheet. It is shown that a violation of (1), together with the scaling argu- 
ment, leads to the result that the influence of the flipping of the bonds in 
the sheet cannot extend over a distance L in the periodic direction. Since, 
when switching from periodic to antiperiodic boundary conditions, a 
domain wall must occur in one of the ground-state configurations at an 
essentially random position, this leads to a contradiction. 

The flaw of this argument consists in the fact that the scaling 
arguments on which it is based do not apply to the cylindrical arrange- 
ment. Indeed, this can be seen in different ways. One way is to note that 
the used scaling assumptions amount to a (correlated) randomness 
assumption for the boundary term. The randomness may be independence 
(as in ref. 1 ) or weak dependence of the boundary conditions with respect 
to the interactions giving rise to the behavior as described in Eq. (3). 
(Problems connected with the use of random boundary conditions are dis- 
cussed in refs. 10-12.) The point which is overlooked when this argument 
is given in refs. 1 and 3 is that, although one obtains a correct upper bound 
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for the AE, if 0 > ( d -  1)/2 there may be no large excitation at all in the 
system. For example, in a two-dimensional Ising ferromagnet, where 0 = 1 
and (1) does not hold, no domain walls occur if one imposes random- 
antirandom boundary conditions on an L x L square; rather, the ground- 
state configuration changes between the " + "  and the " - "  configurations 
with probability 1/2. If Nb is the number of bonds not connected to the 
boundary, both " + "  and " - "  have energy -Nb+O(xf-L ), which is 
smaller than the --Nb + 2L + O(x/-L ) of an interface state. One of the two 
will have minimal energy; which one depends on the--random--boundary 
condition. If the sum of all the terms on the right-hand side of the 
boundary exceeds in absolute value the sum of all terms on the left, flipping 
all spins on the right boundary will cause the whole system to flip to obtain 
the new ground state. In the opposite case, which is of course equally 
probable, the ground-state configuration remains the same. On the other 
hand, in the three-dimensional Ising spin-glass, 0 ~ 0.2, Eq. (1) holds, and 
random-antirandom boundary conditions give rise to a domain wall. (6) 
This numerically most often studied case is the prime example where the 
Fisher-Huse description presumably is indeed valid. 

However, in the periodic-an,tiperiodic case there always is a large-scale 
excitation, namely the domain wall. Therefore, it obeys the scaling argu- 
ment only in the case when this argument allows for a domain wall, which 
is when inequality (1) holds. Therefore, the arguments of refs. 1 and 3 in 
favor of 0 <  ( d - 1 ) / 2  are circular: they assume the validity of scaling 
arguments for the domain wall forcing periodic-antiperiodic boundary 
conditions, but this validity only holds under the condition that 
0 < ( d -  1 )/2, which is the condition they claim to show. 

Another way of visualizing what can go wrong is to consider a cylin- 
drical system which has different lengths in the sheet directions and in the 
perpendicular direction. As only the minimal-energy domain wall will 
occur, the larger the system is in the perpendicular direction, the more 
choices there are to put in a domain wall, and thus the smallerenergy this 
minimal-energy domain wall will have. According to ref. 3, Eq. (2.5), the 
density of low-energy domain walls will not be zero and if the system is too 
large in the perpendicular direction, the domain wall will have an energy 
which is lower than the "typical" O(L~ The point which is overlooked in 
the appendix of ref. 3, is that an L d- a x L system may already be too big 
in the perpendicular direction to get a "typical" domain wall. As remarked 
before, the influence of flipping bonds in a sheet in an infinite system 
propagates over a distance which is only dependent on 0 and the size of the 
sheet. In the cylindrical arrangement this distance is just the length of the 
system in the perpendicular direction, which is imposed from the outside, 
but does not depend on 0 nor on the size of the sheet. 
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Summar iz ing ,  if 0 > ( d - 1 ) / 2 ,  the only conclus ions  one can d raw are 
that  r a n d o m  b o u n d a r y  condi t ions  canno t  genera te  a d o m a i n  wall, and  
d o m a i n  wall  forcing b o u n d a r y  condi t ions  canno t  be cons idered  r a n d o m  
and  canno t  satisfy scaling. The  con t r ad i c t i on  found by F isher  and  Huse  
only reflects the i n a p p r o p r i a t e  use of scal ing a rguments  ra ther  than  the 
imposs ib i l i ty  of v io la t ing  (1). By default ,  this leaves open the poss ib i l i ty  of  
infinitely m a n y  pure  phases  and  an A l m e i d a - T h o u l e s s  line in high d imen-  
sions, as pred ic ted  in refs. 5 and  6. 
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